Saturday, July 25, 2015

Cracking the coding interview--Q12.6-duplicate in billion urls



Cracking the coding interview--Q12.6
You have a billion urls, where each is a huge page. How do you detect the duplicate documents?
译文:
你有10亿个url,每个url对应一个非常大的网页。你怎么检测重复的网页?

解答

  1. 网页大,数量多,要把它们载入内存是不现实的。 因此我们需要一个更简短的方式来表示这些网页。而hash表正是干这事的。 我们将网页内容做哈希,而不是url,这里不同url可能对应相同的网页内容。
  2. 将每个网页转换为一个哈希值后,我们就得到了10亿个哈希值, 很明显,两两对比也是非常耗时的O(n2 )。因此我们需要使用其它高效的方法。
根据以上分析,我们可以推出满足条件的以下算法:
  1. 遍历网页,并计算每个网页的哈希值。
  2. 检查哈希值是否已经在哈希表中,如果是,说明其网页内容是重复的,输出其url。 否则保存url,并将哈希值插入哈希表。
通过这种方法我们可以得到一组url,其对应的网页内容都是唯一的。但有一个问题, 一台计算机可以完成以上任务吗?
  1. 一个网页我们要花费多少存储空间?
    • 每个网页转换成一个4字节的哈希值
    • 假设一个url平均是30个字符,那我们至少需要30个字节
    • 因此对应一个url,我们一共要用掉34个字节
  2. 34字节 * 10亿 = 31.6GB。很明显,单机的内存是无法搞定的。
我们要如何解决这个问题?
  1. 我们可以将这些数据分成多个文件放在磁盘中,分次载入内存处理。 这样一来我们要解决的就是文件的载入/载出问题。
  2. 我们可以通过哈希的方式将数据保存在不同文件,这样一来,大小就不是问题了, 但存取时间就成了问题。硬盘上的哈希表随机读写要耗费较多的时间, 主要花费在寻道及旋转延迟上。关于这个问题, 可以使用电梯调度算法来消除磁头在磁道间的随机移动,以此减少消耗的时间。
  3. 我们可以使用多台机器来处理这些数据。这样一来,我们要面对的就是网络延迟。 假如我们有n台机器。
    • 首先,我们对网页做哈希,得到一个哈希值v
    • v%n 决定这个网页的哈希值会存放在哪台机器
    • v/n 决定这个哈希值存放在该机器上哈希表的位置

Read full article from Cracking the coding interview--Q12.6

Labels

Review (572) System Design (334) System Design - Review (198) Java (189) Coding (75) Interview-System Design (65) Interview (63) Book Notes (59) Coding - Review (59) to-do (45) Linux (43) Knowledge (39) Interview-Java (35) Knowledge - Review (32) Database (31) Design Patterns (31) Big Data (29) Product Architecture (28) MultiThread (27) Soft Skills (27) Concurrency (26) Cracking Code Interview (26) Miscs (25) Distributed (24) OOD Design (24) Google (23) Career (22) Interview - Review (21) Java - Code (21) Operating System (21) Interview Q&A (20) System Design - Practice (20) Tips (19) Algorithm (17) Company - Facebook (17) Security (17) How to Ace Interview (16) Brain Teaser (14) Linux - Shell (14) Redis (14) Testing (14) Tools (14) Code Quality (13) Search (13) Spark (13) Spring (13) Company - LinkedIn (12) How to (12) Interview-Database (12) Interview-Operating System (12) Solr (12) Architecture Principles (11) Resource (10) Amazon (9) Cache (9) Git (9) Interview - MultiThread (9) Scalability (9) Trouble Shooting (9) Web Dev (9) Architecture Model (8) Better Programmer (8) Cassandra (8) Company - Uber (8) Java67 (8) Math (8) OO Design principles (8) SOLID (8) Design (7) Interview Corner (7) JVM (7) Java Basics (7) Kafka (7) Mac (7) Machine Learning (7) NoSQL (7) C++ (6) Chrome (6) File System (6) Highscalability (6) How to Better (6) Network (6) Restful (6) CareerCup (5) Code Review (5) Hash (5) How to Interview (5) JDK Source Code (5) JavaScript (5) Leetcode (5) Must Known (5) Python (5)

Popular Posts