Thursday, December 3, 2015

【google论文一】面向星球的网络搜索:google集群架构



http://duanple.blog.163.com/blog/static/70971767201091102339246/
为了能够支持可扩展的并行化,google的网络搜索应用让不同的查询由不同的处理器处理,同时通过划分全局索引,使得单个查询可以利用多个处理器处理。针对所要处理的工作负载类型,google的集群架构由15000个普通pc机和容错软件组成。这种架构达到了很高的性能,同时由于采用了普通pc机,也节省了采用昂贵的高端服务器的大部分花费。 

本文我们将介绍google的集群架构,讨论那些影响到设计方案的最重要的因素:能效和性价比。在我们的实际操作中,能效实际上是一个关键的度量标准,因为数据中心的电力是有限的,因此电力耗费和制冷成为运作中的关键。 
我们的应用本身可以很容易进行并行化:不同的查询可以运行在不同的处理器上,同时全局索引也划分的使得单个查询可以使用多个处理器。因此,处理器的性价比比峰值性能变得更重要。同时,google的应用是面向吞吐率的,可以更有效的利用处理器提供的并行化,比如并行多线程(SMT),或者多核处理器(CMP)。 

Google的软件架构来源于两个基本的观点。首先我们需要在软件层面提供可靠性,而不是通过硬件,这样我们就可以使用普通的pc构建廉价的高端集群。其次,我们不断的裁剪设计是为了达到最好的总体请求吞吐率,不是为了提高服务器的峰值响应时间, 因为我们可以通过并行化独立的请求来控制响应时间。 
我们相信使用不可靠的廉价pc来构建可靠的计算设施可以达到最好的性价比。通过在不同的机器上备份服务,以及自动化的故障检测和错误处理,为我们的环境提供软件级的可靠性。这种软件级的可靠性在我们的系统设计中几乎随处可见。检查一下一次查询处理的控制流程,有助于理解这种高级的查询服务系统,同时也有助于对于可靠性考虑的理解。

Google的一次查询

当用户在google中输入一次查询,用户浏览器首先通过DNS进行域名解析,将www.google.com转换为ip地址。为了对查询可以进行更有效的处理,我们的服务由分布在世界各地的多个集群组成。每个集群大概有数千个机器,这种地理上的分布可以有效的应付灾难性的数据中心失败比如地震,大规模的停电。基于DNS的负载平衡系统,会计算用户的与每一个物理集群地理上的距离来选择一个合适的物理集群。负载平衡系统,需要最小化请求往返时间,同时要考虑各个集群的可用容量。 
用户浏览器然后给这些集群中的一个发送一个http请求,之后,对于该集群来说,所有的处理都变成了本地化的。在每个集群中有一个基于硬件的负载平衡器监控当前可用的google web servers(GWS)集合,并在这个集合上将本地的请求处理进行负载平衡。收到一个请求之后,GWS协调这个查询的执行,并将结果格式化为html语言。图1表示了这个过程。 
面向星球的网络搜索:google集群架构 - 星星 - 银河里的星星

查询执行由两个主要阶段组成,第一个阶段,索引服务器查阅倒排索引(将每个查询词映射到匹配的文档列表)。索引服务器然后决定相关的文档集合,通过对每个查询词匹配的文档列表求交集,为每个文档计算出一个相关性的分值,这个分值决定了在输出结果中的排序。
 搜索的过程非常具有挑战性,因为需要处理海量数据:原始网页文档通常具有数十T的未压缩数据,从原始数据中导出的倒排索引本身也有好几T的数据。幸运的是,通过将索引划分到不同的片段,可以将搜索高度并行化,每个片段具有从全布索引中随机选择的一个文档子集。一组机器负责处理对于一个索引片段的请求,在整个集群中每个片段都会有这样的一组机器与之对应。每个请求通过中间负载平衡器选择组内机器中的一个,换句话说每个查询将会访问分配到每个片段的一台机器(或者是一组机器的子集)。如果一个片段的备份坏了,负载平衡器将会避免在查询时使用它,我们的集群管理系统的其他组件将会尝试修复它,实在不行就用另一台机器来取代它。停工期间,系统的容量需要减去那台坏掉的机器所代表的容量。然而,服务仍然是未中断的的,索引仍然是可用的。 
第一阶段的查询执行最终输出一个排过序的文档标识符列表。第二阶段则通过获取这个文档列表,然后计算出所有文档的标题和url以及面向查询内容的文档摘要。文档服务器处理这项任务,从硬盘中获取文档,抽取标题以及查询关键词在文档中的出现片段。像索引查找阶段,这里的策略也是对文档进行划分,主要通过:随机分布文档到不同的小片段;针对每个片段的处理具有多个服务器作为备份;通过一个负载平衡器分发请求。文档服务器必须能够访问一个在线的低延时的整个网络的网页的副本。实际上由于对于这个副本的访问需要性能及可用性,所以google实际上在集群中存储了整个web的多个副本。 
除了索引和文档服务阶段,GWS在收到查询时还会初始化几个其他的辅助任务,比如将查询发送给拼写检查系统,广告系统生成相关广告。当所有阶段完成后,GWS生成html输出页面,然后返回给用户浏览器。

使用备份进行容量扩充和容错

我们对系统进行了一些结构化以保证对于索引和其他响应查询相关的数据结构是只读的:更新是相对不频繁的,这样我们就能通过将查询转移到一个服务备份来安全的进行更新。 这条原则,使得我们避免了很多在通用数据库中出现的一致性问题。 
我们也尽力挖掘出大量应用中的固有的并行性:比如我们将在一个大索引中的匹配文档的查询转化为针对多个片段中的匹配文档的多个查询加上开销相对便宜的归并步骤。类似的,我们将查询请求流划分为多个流,每个由一个集群来处理。增加为每个处理索引片段的机器组增加机器来增加系统容量,伴随着索引的增长增长片段的个数。通过将搜索在多个机器上并行化,我们降低了响应一个查询的必需的平均延时,将整个计算任务划分在多个cpu和硬盘上。因为独立的片段相互之间不需要通信,所以极速比几乎是线性的。换句话说,单个索引服务器的cpu速度不会影响整个搜索的整体性能,因为我们可以增加片段数来适应慢的cpu,因此我们的硬件选择主要关注那些可以为我们的应用提供出色的请求吞吐率的机器,而不是可以提供最高的单线程性能的那些。

简单来说,google的集群主要遵循下面三个主要设计原则:
软件可靠性。我们没有选择硬件性容错,比如采用冗余电源,RAID,高质量组件,而是专注于软件可靠性。 
使用备份得到更好的吞吐率和可用性。因为机器本身是不可靠的,我们备份我们的内部服务在很多机器上。通过备份我们得到了容量,与此同时也得到了容错,而这种容错几乎是免费的。 
性价比重于峰值性能。我们购买当前最具性价比的cpu,而不是那些具有最高绝对性能的cpu。 
使用普通pc降低计算花费。这样我们可以为每一个查询提供更多的计算资源,在ranking算法中使用更昂贵的技术,可以搜索文档的更大的索引。

大规模多处理

正如前面提到的,我们的设备是一个由大量廉价pc组成的庞大集群,而不是少数大规模的共享内存机组成的。大规模共享内存机主要用于在计算通信比很低的时候,通信模式或者数据划分是动态或者难预测的,或者总的花费使得硬件花费显得很少的时候(由于管理日常费用和软件许可证价格)。在这些情况下,使得它们的高价格变得合理。
 在google,并不存在这样的需求,因为我们通过划分索引数据和计算来最小化通信和服务器间的负载平衡。我们自己开发需要的软件,通过可扩展的自动化和监控来降低系统管理的日常费用,这些使得硬件花费成为整个系统开销中显著的一块。另外,大规模的共享内存机器不能很好的处理硬件或者软件的失败。这样大部分的错误可能导致整个系统的crash。通过部署大量的多处理器机,我们可以将错误的影响控制在一个小的范围内。总的来看,这样的一个集群通过明显的低成本解决了我们的服务对于性能和可用性的需求。
 初看起来,好像很少有应用具有像google这样的特点,因为很少有服务需要数千台的服务器和数pb的存储。然而可能有很多的应用需要使用基于pc的集群架构。一个应用如果关注性价比,能够运行在不具有私有状态的多个服务器上(这样服务器就可以被复制),它都有可能从类似的架构中获益。比如一个高容量的web服务器或者一个 计算密集型的应用服务器(必须是无状态的)。这些应用具有大量的请求级并行性(请求可以划分在在独立的服务器上处理)。事实上,大的web站点已经采用这样的架构。
 在google规模上,大规模服务器的并行化的一些限制确实变得明显起来,比如商业数据中心在制冷容量上的限制,当前的cpu对于面向吞吐率的应用所做的优化还远远不够。虽然如此,通过使用廉价pc,明显地提高了我们可以为单个查询所能支付的计算量。因此有助于帮助我们提高成千上万的用户的网络搜索体验。

Labels

Review (572) System Design (334) System Design - Review (198) Java (189) Coding (75) Interview-System Design (65) Interview (63) Book Notes (59) Coding - Review (59) to-do (45) Linux (43) Knowledge (39) Interview-Java (35) Knowledge - Review (32) Database (31) Design Patterns (31) Big Data (29) Product Architecture (28) MultiThread (27) Soft Skills (27) Concurrency (26) Cracking Code Interview (26) Miscs (25) Distributed (24) OOD Design (24) Google (23) Career (22) Interview - Review (21) Java - Code (21) Operating System (21) Interview Q&A (20) System Design - Practice (20) Tips (19) Algorithm (17) Company - Facebook (17) Security (17) How to Ace Interview (16) Brain Teaser (14) Linux - Shell (14) Redis (14) Testing (14) Tools (14) Code Quality (13) Search (13) Spark (13) Spring (13) Company - LinkedIn (12) How to (12) Interview-Database (12) Interview-Operating System (12) Solr (12) Architecture Principles (11) Resource (10) Amazon (9) Cache (9) Git (9) Interview - MultiThread (9) Scalability (9) Trouble Shooting (9) Web Dev (9) Architecture Model (8) Better Programmer (8) Cassandra (8) Company - Uber (8) Java67 (8) Math (8) OO Design principles (8) SOLID (8) Design (7) Interview Corner (7) JVM (7) Java Basics (7) Kafka (7) Mac (7) Machine Learning (7) NoSQL (7) C++ (6) Chrome (6) File System (6) Highscalability (6) How to Better (6) Network (6) Restful (6) CareerCup (5) Code Review (5) Hash (5) How to Interview (5) JDK Source Code (5) JavaScript (5) Leetcode (5) Must Known (5) Python (5)

Popular Posts